Impaired cholesterol metabolism and enhanced atherosclerosis in clock mutant mice.
نویسندگان
چکیده
BACKGROUND Clock is a key transcription factor that positively controls circadian regulation. However, its role in plasma cholesterol homeostasis and atherosclerosis has not been studied. METHODS AND RESULTS We show for the first time that dominant-negative Clock mutant protein (Clock(Δ19/Δ19)) enhances plasma cholesterol and atherosclerosis in 3 different mouse models. Detailed analyses revealed that Clk(Δ19/Δ19)Apoe(-/-) mice display hypercholesterolemia resulting from the accumulation of apolipoprotein B48-containing cholesteryl ester-rich lipoproteins. Physiological studies showed that enhanced cholesterol absorption by the intestine contributes to hypercholesterolemia. Molecular studies indicated that the expression of Niemann Pick C1 Like 1, Acyl-CoA:Cholesterol acyltransferase 1, and microsomal triglyceride transfer protein in the intestines of Clk(Δ19/Δ19)Apoe(-/-) mice was high and that enterocytes assembled and secreted more chylomicrons. Furthermore, we identified macrophage dysfunction as another potential cause of increased atherosclerosis in Clk(Δ19/Δ19)Apoe(-/-) mice. Macrophages from Clk(Δ19/Δ19)Apoe(-/-) mice expressed higher levels of scavenger receptors and took up more modified lipoproteins compared with Apoe(-/-) mice, but they expressed low levels of ATP binding casette protein family A member 1 and were defective in cholesterol efflux. Molecular studies revealed that Clock regulates ATP binding casette protein family A member 1 expression in macrophages by modulating upstream transcription factor 2 expression. CONCLUSIONS Clock(Δ19/Δ19) protein enhances atherosclerosis by increasing intestinal cholesterol absorption, augmenting uptake of modified lipoproteins by macrophages, and reducing cholesterol efflux from macrophages. These studies establish that circadian Clock activity is crucial in maintaining low plasma cholesterol levels and in reducing atherogenesis in mice.
منابع مشابه
LGR4 acts as a link between the peripheral circadian clock and lipid metabolism in liver.
The circadian clock plays an important role in the liver by regulating the major aspects of energy metabolism. Currently, it is assumed that the circadian clock regulates metabolism mostly by regulating the expression of liver enzymes at the transcriptional level, but the underlying mechanism is not well understood. In this study, we showed that Lgr4 homozygous mutant (Lgr4(m/m)) mice showed al...
متن کاملAttenuating Effect of Curcumin on Diet-induced Hypercholesterolemia in Mice
Background and Aims: Atherosclerosis is currently a chronic disease in which cholesterols accumulate in large arteries. Many genes such as liver X receptor α (LXRα) are involved in the cholesterol homeostasis. Curcumin, the main active polyphenol component derived from Curcuma longa, contribute to anti-inflammation and antioxidant in the treatment of atherosclerosis. Thus, this stud...
متن کاملHypocholesterolemia, foam cell formation, but no atherosclerosis in mice lacking ABC-transporter A1 and scavenger receptor class B type I
High-density lipoprotein (HDL) mediated reverse cholesterol transport (RCT) is regarded to be crucial for prevention of foam cell formation and atherosclerosis. ABC-transporter A1 (ABCA1) and scavenger receptor BI (SR-BI) are involved in the biogenesis of HDL and the selective delivery of HDL cholesterol to the liver, respectively. In the present study, we phenotypically characterized mice lack...
متن کاملClock mutation facilitates accumulation of cholesterol in the liver of mice fed a cholesterol and/or cholic acid diet.
Cholesterol (CH) homeostasis in the liver is regulated by enzymes of CH synthesis such as 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and catabolic enzymes such as cytochrome P-450, family 7, subfamily A, and polypeptide 1 (CYP7A1). Since a circadian clock controls the gene expression of these enzymes, these genes exhibit circadian rhythm in the liver. In this study, we examined the...
متن کاملResveratrol protects against diet-induced atherosclerosis by reducing low-density lipoprotein cholesterol and inhibiting inflammation in apolipoprotein E-deficient mice
Objective(s):Resveratrol (RES) is a polyphenol compound that has been shown a promising cardioprotective effect. However, some reports have yielded conflicting findings. Herein, we investigated the anti-atherosclerotic effects of RES in apolipoprotein E (apo E)-deficient mice on a high cholesterol diet. Materials and Methods: Firstly, atherosclerosis was induced by feeding a high cholesterol di...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation
دوره 128 16 شماره
صفحات -
تاریخ انتشار 2013